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Frequency-Dependent »Representability
in Density Functional Theory

Daniel Mearns and Walter Kohn
Department of Physics
University of California

Santa Barbara CA 93106

ABSTRACT: In density functional theory (DFT) of the ground state a density
distribution, n, (r), is called v-representable (VR) if it is the ground state density
in some external potential. (It is known that not all “reasonable” no(r) are VR.) In
DFT of time-dependent linear response of a non-degencratc ground state a similar
question arises: Is a response density, nl(i-;w)cfi‘ t VR, ie., is it the response
to some perturbing potential vy (r,w)e~!? (E.K.U. Gross and W. Kohn, Phys.
Rev. Lett. 55, 2850 (1985).) In the present paper we show that (1), if the
frequency w < wpmip (the lowest excitation frequency), the answer is affirmative;
and (2), if w > Wmin, the answer is not necessarily affirmative, as demonstrated
by counterexamples. (We exhibit “reasonable” functions n;(r,w)e=*?¢ which, at
isolated frequencies, are not VR.) Implications for time-dependent DFT of linear

response are discussed. Accesion For . -
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L INTRODUCTION

The question under what conditions a static density distribution, ns(r), is *representable
(VR)! has attracted interest in recent years.2-34 The issue of v-representability also arises
for time-dependent densities, n(r,t). In particular, in connection with time-dependent lin-
ear response® one encounters the following situation: Let W, be the non-degenerate ground
state of a many electron system with density no(r), in a static external potential ve(r). A
small perturbing potential, v)(r,w)e~*?, is known to lead to a unique first order density
response, n; (r,w)e~™?, where n| and v, are related by the response function x:

-
§ o

-
Ll e M

ny(ryw) = / x(e: ¥ )y (v, w)dr. 1)

The converse question is, can a given function, n1(r,w), be generated by some function
v1(r,w)? This is the v-representability problem of linear density response theory addressed
in this paper. It may be posed for interacting as well as 'don-intcacting particles.




IL. NON-INTERACTING FERMIONS

For non-interacting fermions, first order time-dependent perturbation theory gives the
‘ following resulit for the response function:
N
o #;(r)9;(r)¢}(r)ei(r)
o rw) = . _ ) IV

nnriw)= - s ' 2
2 Xa(r,¥';w) %;(f. o Ry Pr (2)
;;z; where ¢; are the single particle eigenfunctions of the unperturbed hamiltonian, ¢; the
s .
:’:: cigenvalues, f; the occupation numbers (1 or 0) for the ground state, and § is a positive
‘o:: . a .I . l
‘;’.;.i: Except at the resonances, w = é,- — €;, Xs is hermitian and real and has a complete set
*y
;w:".’ of orthonormal eigenfunctions, ¢,(r,w), and real eigenvalues, ),(w):
> [ e wle@ wd = rwiatew) ®
Y .
5
I, for some frequency @, one of the- eigenvalues, say ), vanishes then the perturbing
e potential
3 1 (r, @) = pg(r, @) (4)
o
Lh.

(# << 1) has vanishing first order density response:
K m@.a) = [x@ia)n e o)
\'0'
e 1
= wA(@)gy(r,3) = o. (5)

$l
Ko?
; 3 Also, clearly, the density change
— n1(r,3) = ueglr,a) (6)
l‘r
i .
%5 is not induced by any linear combination of the complete set ¢,(r,@), that is, it is not VR
" as a linear response density.
o 3
=
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Conversely, if all A,(w) 5 O any density that can be expressed by a series of the complete
set of eigenfunctions,
mi(rw) = ) np(w)e(r,w), (7)
is VR by the potential )
vi(r,w) = D Ag(w)ny g(w)ge(r,w), (8)
provided that the latter series converge:.

For all frequencies there exists one vanishing eigenvalue, corresponding to the trivial
perturbation vy = const. (The corresponding n; = const. is trivially not VR.) We shall
show that for any system at frequencies smaller than the first resonance no non-trivial van-
ishing eigenvalues exist, and hence all densities which have a sufficiently rapidly convergent
expansion in the functions ¢, are VR.

Restricting attention to non-resonant frequencies and choosing the eigenfunctions ¢;
real, Eq. (2) may be written as -

xalr,¥iw) = 3 ‘..z‘if:,z,_ $a(r)85(®)bs(F)ba (), ©)
ad @

where the indices @ and § denote the occupied and unoccupied levels, respectively. The

response is
2¢5,
ny(r,w) = Z,, ;—,ﬁ; Vada(r)ds(r), (10)
where
Vie = / 65(r)1 (r, ) (r)dr. (11)

The matrix elements V3, cannot all vanish, otherwise the determinantal wavefunction
perturbed by v; would be identical to the unperturbed ground state. The integral

2¢ '
/nl(r,w)vl(r,u)dr = Z “7-:&:%— Vﬁza (12)
a8 a
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is then negative-definite for frequencies below the first resonance. Therefore, 7 can not
vanish identically, and x, can have no vanishing eigenvalue in this range.

Let us note in passing that, for the special case of a single particle, the density change

N i’ .
"~ 2651
4 ny(r,w) = 1(r) ; Ao Va1 44(r)- (13)
‘: Owing to the linear independence of the eigenfunctions, ¢4, ) can not vanish identically
E, at any frequency. '
!
'

We shall now present two examples of systems which, at isolated frequencies above the v

J
first resonance, have non-VR response densities. ‘

K '.:
' 4.
¥
s A. One-dimensional Ring, vo= 0 0
0‘ .
' For a one-dimensional ring, 0 < z < 2, the non-interacting eigenfunctions are plane -
' waves: "
belz) = (22)71/2 o=, (14)
2 ':
K In the common gauge, k, is an integer. The ground state with one particle is of no '
N interest (always VR). The ground state with two particles is two-fold degenerate and hence
| A
. inadmissable for our purposes. However, by choosing an appropriate constant gauge, the N
{ allowed k, are all shifted by % so that ky = (20 +1)/2, £ = 0,+1,+2,.... In this gauge, the
. two-particle ground state is non-degenerate. Eq.(2) takes the form 8
N,
J
Y . . — - . - ;
R 1 ez(k,-k.)z e—t(k,—k,)z’ e—i(ka—ka)z eilks ko )z
s M = - - y 15
Xs(7: 750) = = Zﬂ e . Lo () :
' where
)
g €ga = k3 — k2. (16)

' 5

\

- 0
< . . - .-t 3 F .‘Q' O\ “_‘I (Y
REREHT %A %), 0 RN SOOI -.‘\‘v. AP A SOOI R0 e
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The eigenfunctions of x, are plane waves, independent of w, so that

Xs = Z Ae(w)se(=)s7 (), (17)
140
where
c(z) = (2x)71/2 eit2, (18)
and

1 1
M= 2 mmmm T L mwem

ap af
(bg—bant) (hg=kam-0)
= 2 - - X - (19)
W= (8 +2ka) ~  w+ (8- 2ks)’
(Iba+ti>by) (lha=d>hy)

with N the number of particles. Formmplc,forst,kyalmdkaatisotha.t

Axi(w) = uTt_4

202+ 22 -0
P g7 gy S gy 7 ey

Hence each )y, |£| > 1, has two poles, with a zero lying between them at @ = £(¢2 — 1)}/2,

Ae(w) = il1el>1 (20)

B. One-dimensional Box, vo= 0

For a one-dimensional box, 0 < z < x, the non-interacting eigenfunctions are standing

waves: }
éu(z) = (2/x)"/?sintz, (21)
where £ = 1,2, 3,..., and so
oy 4 €5a . . P
x,(q:,z jw) = = g’; “’2‘—%5 sinaz sinfz sinfz sinaz (22)
where
€go = B° - a’. (23)
6
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With the expansion

(o)

vi(z,w) = Y ay(w)costz, (24)
=1
the matrix elements, Eq. (11), take the form

Voa = %(“ﬁ-a = ag+a)s (25)
hence
m(zw) = > ST (0a-a(6) = apralu) [en(f - @)z - colf + a)al. (29
Theeigmtluuan'deicenfunctiomofx, are given by
n1(zw) = A(w)oy (2 w). (27)

For two particles this leads to the set of equations:

1 S )
Aay = = ———5 (a1 - a5).

X¢2=% {0)2-—87(-0‘2*44)"*"—5'1217 (42-46)}
Aag = = {TF (a3 —ag) + ——-7 2 —5pz (@3- ¢7)}

1 32 i
A“":;{wz 342 (M4~ %)+ o3 (a4 —as) —T5—7 (a2 - %)}

_1 (e+1)2-1 (t+2)2-4
Aay = — {u2-[(¢+1)2—1]2 (ae-¢e+2)+w2_[(t+2)2_4]2 (8¢ — agiq)

t-1)2-1 (—-2)2 -
w2_([(t—)1)2 _1]2 (Gz-z - ay) -u2-([(l—)2)2i4]2 (ap—g —az)}; £>5.  (28)

Since the even and odd Fourier components are not coupled the eigenfunctions have
definite parity. Numerical solutions of the equations corresponding to even eigenfunctions
have been carried out for frequencies 0 < w < 50. The method consists of taking a finite
series for Eq. (24), so that the solution of Eqs. (28) is reduced to diagonalization of a
finite matrix. Since for any fixed w the series of Eq. (22) is uniformly convergent in the

7
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variables z and 7/, x, can be approximated with arbitrary accuracy by a sufficiently large
matrix, for any fixed frequency range. 5

A plot of the eigenvalues for a 30-dimensional matrix, Fig. 1, exhibits two eigenvalues
passing through zero, above the resonances at 12 and 32. Fig. 2 is an expanded view of the
E-’ first zero in which the repulsion between the eigenvalues, indicating a mixing between the

eigenfunctions in regions of near-degeneracy, is more pronounced. Despite this mixing the

eigenfunction corresponding to the vanishing eigenvalue tends to a limit as the eigenvalue

approaches zero from above, as shown in Fig. 3 for the first zero. Fig. 4 is a plot of the

,:‘l:‘n_{a :‘l :ft. R

eigenfunction at a frequency for which the eigenvalue is very small and positive. It is given

by a rapidly converging Fourier series and, accordingly, is smooth in appearance.
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[II. INTERACTING FERMIONS

The response function for N interacting fermions is

! o 2Ek°
x(r’r;u) - —— \po(r’r RN 4 )\F (r’r R )‘b ...dr‘
Z_:l - EL / 2 V)W (r, v)drs v
x/\F,,(r',r'g,---,r’N)\Fo(r’,r'g,---,r"v)dr’g---r"v, (29)

where E; and ¥; (0 < § < oo0) are the eigenvalues and normalized eigenfunctions of the
N-particle hamiltonian, and Ey, = E, — E,. .The relations analogous to Egs. (10) and
(12) for the non-interacting case are

0
2E
ny(rw) = ﬁg_ Vl:o/‘I’o(r’rm'"er)‘I’k(rsr%'“’rN)dr2"'drN (30)
k=1 ko -
and
o 2E;, 2
/ul(r,w)vl(r,w)dr = Z 2 og Vios (31)
k=1 ko
where '
Vio = N/‘I’k(rl-rz.--'rN)v1(r1)‘I’o(r1,r2,---,rN)drldrzmdrN- (32)

Eq. (31), like Eq. (12), is negative-definite for frequencies below the first resonance.

Therefore, exactly as shown in Sec. I for x,, it follows that x can have no vanishing

eigenvalues in this range.
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’ I[V. CONCLUDING REMARKS
o
B
‘g:;: In their paper on density functional theory of linear response, Gross and Kohn3 pre-
supposed that the physical density no(r) + ny(r,t) was “non-interacting VR" (VR-N),
(X!
‘;,.': that is, can be reproduced by a system of non-interacting particles in an external potential
]
f.}\a“ vo(r) + v1(r,t). We have shown in this paper that this will be the case if n, by itself is VR-
t:;‘- N and the frequency of v; is less than the smallest resonance. However, if the frequency
L:s' is higher, our examples show that caution is in order. If our examplies are representative,
?"
e then in general we expect that there will be ssolated frequencies, @, at which most density
.:. ) changes are not VR-N. The exceptions are those special functions which are orthogonal to
Y
:' the functions ¢;(r,@), corresponding to vanishing eigenvalues of x,.

>

We note, however, that in the special case of an infinite uniform non-interacting electron

::jf gas the response function x(k,w) has no vanishing eigenvalues for any k or w, so that any
’j:’-_I: sufficiently regular n)(r,w) is VR-N at all frequencies.
' The authors thank E.K.U. Gross for heipful discussions. Support by the National
= Science Foundation through Grant No. DMR83-10117 and the Office of Naval Rasearch
o under Contract No. N0O0014-84-K-0548 is gratefully acknowledged.
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FIGURE CAPTIONS

Fig. 1. Eigenvalues of x,; for a 30-dimensional matrix. The dashed lines mark the
locations of the resonances at w = 8, 12, 24, 32, and 48.

;‘.- Fig. 2. Eigenvalues of x, in a frequency range containing a zero.

Fig. 3. Magnitudes of the first 10 Fourier amplitudes of an eigenfunction with eigen-
% value tending to zero, weighted so that (x/2)!/23,|as/2 = 1. The dashed line is the
) eigenvalue curve in the same frequency range (vertical scale not shown).

Fig. 4. Normalised eigenfunction for A(w) = 1.2386x10~%, w = 12.688.
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